Skip to main content

DIY Roomba Virtual Wall, Part 5

After using the DIY Roomba Virtual Walls for a week now, I found something interesting that is rarely mentioned by the folks who have made this. The only mention I could find is from this blog post:

"After examining the original virtual wall, with a webcam, I was able to see that it emits infrared light from its top round transparent ring and from a small hole above the switches. The light coming from the top ring prevents the robot from colliding with the virtual wall, if it comes from its sides or from behind. The front hole emits light as a beam. This beam of light is directional and stops at the nearest obstacle, probably a real wall, preventing the robot from crossing it to the other side."

Indeed, when using the DIY version, the first thing I noticed is that the unit has to be strategically placed because the Roomba will knock into it more often than expected. 

So a more robust DIY version will need to have another IR LED pointing at some kind of conical reflector mounted at the top that spreads the IR signal around the unit to prevent Roomba from running into it, just like the commercial version.

Mind you, the DIY version still works very well. It's just that some thought needs to be given to its placement so that it won't be knocked away or tipped over by the Roomba easily.

Comments

Popular posts from this blog

Update: Line adapter for Ozito Blade Trimmer

Update (Dec 2021): If you access to a 3D printer, I would now recommend this solution , which makes it super easy to replace the trimmer line. I have been using it for a few months now with zero issue.

Cooling mod for the X96 Air

I realized after my Ugoos box died that overheating is a big problem with cheap Android TV boxes. A teardown of the Ugoos box shows that it does not have any heatsink or fan at all!  The X96 Air does have a heatsink, but the heatsink is located at the bottom of the casing with no ventilation. In this default configuration, with the ambient room temperature at 25c and playing a 1080p video, I was seeing the CPU temperature at 67c. I drilled a couple of holes at the bottom of the casing. The CPU temperature fell to 59c with the box raised about 2cm with plastic blocks. I retrieved an old 5V laptop fan: Then cut and strip away a spare USB cable: Solder the red and black wires on the fan and the cable: Secure the fan to the bottom of the casing with double-sided tape, then plug the fan into the box's USB connector. Here's a view of the box with some 3D-printed risers installed at the bottom to give the mounted fan sufficient clearance: The CPU now runs at 43c, a huge drop from the ...

Line adapter for Ozito Blade Trimmer

This is an adapter for Ozito 18V battery trimmer (and possibly some Bosch trimmers as well) that uses a plastic blade for cutting. It lets you insert a 2.4mm trimmer line (about 8cm long) and use that for cutting. Simply cut a length of trimmer line and briefly heat up one end with a lighter so that a little bulb is formed. Then insert the trimmer line into the adapter and slot that into the trimmer as per normal. Make sure the trimmer line is not so long that it touches the safety guard. If that is the case, simply trim off any excess with a cutter or scissors. This part is best printed using PETG, which is a tougher and more flexible material. PLA is more rigid and breaks more easily. However, even with PETG, it will still break when it hits something really hard. Since this takes only 0.5m of material and 15 minutes to print, I will usually print a batch of nine at a time at very little cost. The blades that they sell do not break when it hits a hard object, but ...