Skip to main content

RBX - Robotics Brick Extension

RBX is a project that I have been working on for some time now. It is a robotics kit designed for young tinkerers. It consists of a set of Lego-compatible "bricks" made with common components, such as LED, pushbutton, servo, motor etc. The brick housings are printed using a 3D printer. The components are hooked up to a microcontroller via standardized "ports". Programming is done via a variant of Javascript (a port of Duktape) on a browser-based IDE.


I started the project because I found that block-based programming environment such as Lego Mindstorm are a little too simple for older kids (8 - 12 year old), yet the long compile-run cycle of Arduino is not suitable for tinkering and quick prototyping. Something that sits in the middle is needed.

On the hardware side, one of the first obstacles for a child trying to break into microcontroller programming is hooking up the desired circuitry on a breadboard. Anything beyond the the introductory "Hello World" LED example requires a ton of wiring. If servos or motors are involved, a separate power rail is required, which makes things even more complicated.

RBX uses various JST connectors to connect to the microcontroller (which is based on the ESP32 dev board). These are called "ports", which maps to the microcontroller pins. The ports come in 2, 3 and 4-pin variety, and each port has a unique identifier. 


In this way, hooking up components becomes a plug-and-play affair. Since the connectors need to be matching and oriented correctly, this makes it less likely for components to be hooked up the wrong way.

Programming is done via a browser-based IDE served directly from the microcontroller. Once the microcontroller is powered on, the user is able to connect via a web browser and start entering and running JavaScript code immediately.


The entire project can be found on Github. It uses FreeCAD for designing the 3D housing, KiCAD for designing the microcontroller PCBs, and Platformio for coding the firmware.


Comments

Popular posts from this blog

Update: Line adapter for Ozito Blade Trimmer

Update (Dec 2021): If you access to a 3D printer, I would now recommend this solution , which makes it super easy to replace the trimmer line. I have been using it for a few months now with zero issue.

Cooling mod for the X96 Air

I realized after my Ugoos box died that overheating is a big problem with cheap Android TV boxes. A teardown of the Ugoos box shows that it does not have any heatsink or fan at all!  The X96 Air does have a heatsink, but the heatsink is located at the bottom of the casing with no ventilation. In this default configuration, with the ambient room temperature at 25c and playing a 1080p video, I was seeing the CPU temperature at 67c. I drilled a couple of holes at the bottom of the casing. The CPU temperature fell to 59c with the box raised about 2cm with plastic blocks. I retrieved an old 5V laptop fan: Then cut and strip away a spare USB cable: Solder the red and black wires on the fan and the cable: Secure the fan to the bottom of the casing with double-sided tape, then plug the fan into the box's USB connector. Here's a view of the box with some 3D-printed risers installed at the bottom to give the mounted fan sufficient clearance: The CPU now runs at 43c, a huge drop from the ...

Cooling mod for the X96 Air #2

Previously, I added a USB cooling fan to the X96 Air TV box . The problem with this mod is that the fan is always running, and it runs at full speed. Ideally, the fan should kick in only when the CPU temperature is above a certain threshold. It would be even better if there is a way to control the fan speed. Dan McDonald left me a comment pointing to his project on Github . He basically connected the fan to a USB relay that can be controlled by Python script. His project inspired me to make a similar mod that would make use of the spare D1 Mini boards I have lying around. The plan is to hook up the fan to a MOSFET (2N7000) and control it via PWM. Here's the very simple circuit: The code simply reads a single character from the serial port (0 - 9). 0 will turn the fan off, while 1 - 9 will generate a proportional PWM to drive the fan, with 1 being the lowest and 9 being the highest. Here's the Arduino code: #include <Arduino.h> void setup () { Serial . begin ( 9600 ...