Skip to main content

ESPCLOCK4 - A Simpler Reset Module

In ESPCLOCK3, the following reset circuitry was used:

This generates a short low pulse for the RST pin on the ESP8266 even if the switch is held down, so that the program can read the switch pin after reset. If it it found that the switch is still held down, it can perform a factory reset.

In the ESPCLOCK4, I wanted to try a software-only approach with the ULP. The main idea is the ULP will check the switch (with a little software debounce processing). If it finds the switch depressed, it will wake the main processor, which will then perform a software reset. 

This means we will only need a single pushbutton, with one end connected to an input pin (pulled up), and the other end connected to GND. No need for additional resistors/capacitors.

I connect the reset button to GPIO4/GND, and add the following definitions:

#define RESETBTN_PIN            RTCIO_GPIO4_CHANNEL
#define RESETBTN_PIN_GPIO       GPIO_NUM_4
#define WAKE_RESET_BUTTON       1

The following code is added to init_gpio() to configure the pin as pulled-up input:

void init_gpio() {
  ...
  init_gpio_pin(RESETBTN_PIN_GPIO, RTC_GPIO_MODE_INPUT_OUTPUT, HIGH);
}

Another RTC_SLOW_MEM variable is added to store the wake up reason, which the ULP will use to indicate to the main CPU why it has been woken up.

// Named indices into RTC_SLOW_MEM
enum { 
  ...
  WAKE_REASON, // Reason for waking up main CPU
};

Also add a macro to read the state of a given GPIO pin:

// Read GPIO pin value into R0
#define X_GPIO_GET(pin) \
  I_RD_REG(RTC_GPIO_IN_REG, RTC_GPIO_IN_NEXT_S+pin, RTC_GPIO_IN_NEXT_S+pin)

Now in the ULP, add the following code:

    // Is reset button pressed (active low)?
    X_GPIO_GET(RESETBTN_PIN),
    M_BGE(_RESETBTN_CHECKED, 1),
    I_DELAY(8000), // 1ms debounce
    X_GPIO_GET(RESETBTN_PIN),
    M_BGE(_RESETBTN_CHECKED, 1),
    X_RTC_SAVEI(WAKE_REASON, WAKE_RESET_BUTTON),
  M_LABEL(_WAIT_WAKEUP_RDY),
    I_RD_REG(RTC_CNTL_LOW_POWER_ST_REG, RTC_CNTL_RDY_FOR_WAKEUP_S, RTC_CNTL_RDY_FOR_WAKEUP_S),
    M_BL(_WAIT_WAKEUP_RDY, 1),
    I_WAKE(),
    I_END(),
    I_HALT(),
  M_LABEL(_RESETBTN_CHECKED),
    ...

What the code basically does is to read GPIO4. If it is low, it will wait for a debouncing period of 1ms and read the pin again. If it it still low, it writes WAKE_RESET_BUTTON (1) as the reason code to WAKE_REASON. Then it waits for the RTC_CNTL_RDY_FOR_WAKEUP bit to become 1, which indicates that the main CPU is ready for wake up. At this point, we issue:

- I_WAKE() to wake the main CPU

- I_END() to stop the RTC timer, because we don't want to ULP code to be run again

- I_HALT() to stop the ULP code

In the setup() code, an additional line is added to allow the ULP code to wake the main CPU:

  esp_sleep_enable_ulp_wakeup();
  esp_deep_sleep_start();

The code to handle the wakeup reason is this:

  esp_sleep_wakeup_cause_t cause = esp_sleep_get_wakeup_cause();
  if (cause != ESP_SLEEP_WAKEUP_ULP) {
    // Initial startup
    ...
    // If reset detected, start in config mode
    delay(1000); // allow time for reset button to be released
    pinMode(RESETBTN_PIN_GPIO, INPUT_PULLUP);
    bool reset = !digitalRead(RESETBTN_PIN_GPIO);
    if (reset) { 
       // Reset button is still held down
       // Perform factory reset
    }
    ...
  } else {
    // Wake up due to ULP
    uint16_t reason = RTCVAR(WAKE_REASON); 
    if (reason == WAKE_RESET_BUTTON) {
      esp_restart();
    }
  }

The cause value will tell us whether the main CPU is just starting up, or it is being woken up by the ULP. If it is starting up, it checks GPIO4 to see if the button is still being held down. If so, it can initiate the factory reset logic.

If it is woken up by the ULP, it checks the wake reason to determine the action to take. So if the wake reason is WAKE_RESET_BUTTON, we call esp_restart() to reset the ESP32.

Issue with esp_restart()

After playing around with the code above, it was found that esp_restart() does not always perform a full reset of the ESP32. This resulted in the ULP code not running, or running once and stopping, in a unpredictable manner. This behaviour can be observed every 2 or 3 resets using esp_restart().

I googled around, and this post seems to fit the bill. It also appears esp_restart() has a long history of problems: example, example, example, example. This is because esp_restart() performs a software reset of the unit, which is different from pulling the EN pin low, and sometimes it misses certain things.

After much digging around and hair pulling, I finally found a reliable way to perform a hardware reset of the MCU:

void esp_hardware_restart() {
  rtc_wdt_protect_off();
  rtc_wdt_disable();
  rtc_wdt_set_length_of_reset_signal(RTC_WDT_SYS_RESET_SIG, RTC_WDT_LENGTH_3_2us);
  rtc_wdt_set_stage(RTC_WDT_STAGE0, RTC_WDT_STAGE_ACTION_RESET_RTC);
  rtc_wdt_set_time(RTC_WDT_STAGE0, 500);
  rtc_wdt_enable();
  rtc_wdt_protect_on();
  while(true);
}

This uses the RTC watchdog timer to induce a hardware reset. The idea for this solution is taken from this post and this post

The above code sets the stage 0 timeout for the RTC WDT to 500ms. If the WDT is not "fed" or disabled by the code within that time, a hardware reset signal is initiated. You can see that a hardware reset is performed by connecting the ESP32 to a serial monitor. The same status messages as powering on the ESP32 are displayed when the reset occurs. 

When this solution is adopted, everything works as expected. The ULP code runs without a hitch after each reset.

ESPCLOCK1 / ESPCLOCK2 / ESPCLOCK3 / ESPCLOCK4

Comments

Popular posts from this blog

Cooling mod for the X96 Air #2

Previously, I added a USB cooling fan to the X96 Air TV box . The problem with this mod is that the fan is always running, and it runs at full speed. Ideally, the fan should kick in only when the CPU temperature is above a certain threshold. It would be even better if there is a way to control the fan speed. Dan McDonald left me a comment pointing to his project on Github . He basically connected the fan to a USB relay that can be controlled by Python script. His project inspired me to make a similar mod that would make use of the spare D1 Mini boards I have lying around. The plan is to hook up the fan to a MOSFET (2N7000) and control it via PWM. Here's the very simple circuit: The code simply reads a single character from the serial port (0 - 9). 0 will turn the fan off, while 1 - 9 will generate a proportional PWM to drive the fan, with 1 being the lowest and 9 being the highest. Here's the Arduino code: #include <Arduino.h> void setup () { Serial . begin ( 9600 ...

Installing and customizing CoreELEC in X96 Air

I previously installed CoreELEC on another TV Box ( Ugoos X3 Pro ), which unfortunately died after only 9 months during the summer (due to the unit overheating, which I learned is a common problem for cheap Android TV boxes). So this time I purchased a X96 Air  (4GB/32Gb) and had to do the whole thing again. So this is a note-to-self in case I ever have to install CoreELEC again on some other device. Installation of CoreELEC is simple enough by following this guide . Basically, it involves downloading and writing the firmware to a microSD card using usbimager . Then insert the microSD card, reset the unit and hold the reset until the logo appears. The unit will then proceed to boot into CoreELEC. First thing is to connect to WiFi, then enable SSH. This allows me to login via ssh and execute: ceemmc -x from the terminal. This writes CoreELEC to the built-in eMMC storage, after which I am able to remove the microSD card and reboot the unit into CoreELEC via the built-in sto...

DC-DC Buck Stepdown Converter for ESP8266

I am working on a project that requires a step-down converter from 12V to 5V, that will then power a WeMOS D1 Mini. I saw this new mini buck converter based on the usual LM2596 MP2307 , so I thought I'd give it a try. Unfortunately, it didn't work. Although it is supposed to be able to supply up to 1.8A, the D1 Mini was not able to boot up. The 5V pin was being properly supplied, but the 3.3V pin measures at only ~1.3V. So I had to go back to my usual LM2596 module, which is much larger, but works to power the D1 Mini with a 12V source. Here's a great review of the mini buck converter I found while trying to figure out how to make it work. The fact that it has high quiescent current (~60mA) is also mentioned in a few other sources.