Skip to main content

Drivinator Direct Drive Mod for Ender 3

I recently tried printing and installing the Drivinator, which is a direct drive mod for the Creality Ender 3. It makes use of all existing parts, so there is nothing extra to purchase (the stepper motor wire needs to be lengthened, which is easy done by a little splicing; an even easier route is to purchase an extension cable online). It is also compatible with the FreeABL bed levelling mod.


Besides FreeABL, this is easily the best mod I have installed for the Ender 3, well worth the 1 hour or so I spent on the job. This was the YouTube video which helped me install the mod:


Where before the extruder would sometimes skip and grind under the Bowden tube setup, the extrusion after the upgrade is just smooth as butter. The extra weight on the print head also doesn't seem to affect print quality or speed.

With the enhanced extrusion, I was now able to crank up the print speed. But at higher print speeds, I discovered sharp corners were showing signs of over extrusion, so I needed to find a way to enable "Linear Advance" in the Marlin firmware to solve this problem.

As I detailed in my previous post, I have already crammed in normal LCD menu, auto bed levelling and S-curve acceleration into the miserly 128KB afforded by the original Sanguino board on my Ender 3. Surely this time I would finally need to upgrade the board?

Incredibly, I found I was able to squeeze in Linear Advance with the following config changes:

#define LIN_ADVANCE
#define LIN_ADVANCE_K 0
#define EXPERIMENTAL_SCURVE
#define NO_VOLUMETRICS

So basically by disabling volumetrics, which I didn't use anyway, I was able to enable Linear Advance along with all the other goodies I have enabled previously.

The next thing that needed to be done is to calibrate the K-factor using the calibration test pattern generator. Once that was done, I was able to crank up the print speed massively with very little degradation in print quality. The print time was roughly reduced by 40% over the Bowden tube setup using all stock parts, which is pretty impressive if you ask me!

Recent update:

Shortly after the above mod, I updated to Marlin 2.0.7.2, and wanted to include the Z Probe Offset Wizard.  This is enabled by setting in Configuration_adv.h:

#define PROBE_OFFSET_WIZARD
#define PROBE_OFFSET_START -5.0

Unfortunately, this addition made the compiled result go above the 128KB limit, so I had to use the final weapon, which is to add the following compiler directive:

-finline-limit=3 -ffast-math

to platformio.ini under the [melzi_optimized] section.

After this was done, the result was able to fit into 128KB:

RAM:   [===       ]  31.9% (used 5225 bytes from 16384 bytes)
Flash: [==========]  98.5% (used 128114 bytes from 130048 bytes)

and the new wizard can be found under Configuration > Advanced Settings > Probe Offsets > Z Probe Wizard



Comments

Popular posts from this blog

Update: Line adapter for Ozito Blade Trimmer

Update (Dec 2021): If you access to a 3D printer, I would now recommend this solution , which makes it super easy to replace the trimmer line. I have been using it for a few months now with zero issue.

Cooling mod for the X96 Air

I realized after my Ugoos box died that overheating is a big problem with cheap Android TV boxes. A teardown of the Ugoos box shows that it does not have any heatsink or fan at all!  The X96 Air does have a heatsink, but the heatsink is located at the bottom of the casing with no ventilation. In this default configuration, with the ambient room temperature at 25c and playing a 1080p video, I was seeing the CPU temperature at 67c. I drilled a couple of holes at the bottom of the casing. The CPU temperature fell to 59c with the box raised about 2cm with plastic blocks. I retrieved an old 5V laptop fan: Then cut and strip away a spare USB cable: Solder the red and black wires on the fan and the cable: Secure the fan to the bottom of the casing with double-sided tape, then plug the fan into the box's USB connector. Here's a view of the box with some 3D-printed risers installed at the bottom to give the mounted fan sufficient clearance: The CPU now runs at 43c, a huge drop from the ...

Installing and customizing CoreELEC in X96 Air

I previously installed CoreELEC on another TV Box ( Ugoos X3 Pro ), which unfortunately died after only 9 months during the summer (due to the unit overheating, which I learned is a common problem for cheap Android TV boxes). So this time I purchased a X96 Air  (4GB/32Gb) and had to do the whole thing again. So this is a note-to-self in case I ever have to install CoreELEC again on some other device. Installation of CoreELEC is simple enough by following this guide . Basically, it involves downloading and writing the firmware to a microSD card using usbimager . Then insert the microSD card, reset the unit and hold the reset until the logo appears. The unit will then proceed to boot into CoreELEC. First thing is to connect to WiFi, then enable SSH. This allows me to login via ssh and execute: ceemmc -x from the terminal. This writes CoreELEC to the built-in eMMC storage, after which I am able to remove the microSD card and reboot the unit into CoreELEC via the built-in sto...