Skip to main content

Line adapter for Ozito Blade Trimmer

This is an adapter for Ozito 18V battery trimmer (and possibly some Bosch trimmers as well) that uses a plastic blade for cutting.


It lets you insert a 2.4mm trimmer line (about 8cm long) and use that for cutting.


Simply cut a length of trimmer line and briefly heat up one end with a lighter so that a little bulb is formed.


Then insert the trimmer line into the adapter and slot that into the trimmer as per normal. Make sure the trimmer line is not so long that it touches the safety guard. If that is the case, simply trim off any excess with a cutter or scissors.


This part is best printed using PETG, which is a tougher and more flexible material. PLA is more rigid and breaks more easily. However, even with PETG, it will still break when it hits something really hard. Since this takes only 0.5m of material and 15 minutes to print, I will usually print a batch of nine at a time at very little cost. The blades that they sell do not break when it hits a hard object, but it will dislodge and fly off, so the end result to me is the same (but costs more).

I print this with 100% infill.

You can find the OpenSCAD source file and STL on Thingiverse.

Update 22 Sep 2019: PETG is still no tough enough for this part. I checked, and the original trimmer blade is made with PA-6, which is a type of nylon. PA-6 filament is available for purchase, but they are double the price of PLA/PETG. 

Comments

Popular posts from this blog

Update: Line adapter for Ozito Blade Trimmer

Update (Dec 2021): If you access to a 3D printer, I would now recommend this solution , which makes it super easy to replace the trimmer line. I have been using it for a few months now with zero issue.

Cooling mod for the X96 Air

I realized after my Ugoos box died that overheating is a big problem with cheap Android TV boxes. A teardown of the Ugoos box shows that it does not have any heatsink or fan at all!  The X96 Air does have a heatsink, but the heatsink is located at the bottom of the casing with no ventilation. In this default configuration, with the ambient room temperature at 25c and playing a 1080p video, I was seeing the CPU temperature at 67c. I drilled a couple of holes at the bottom of the casing. The CPU temperature fell to 59c with the box raised about 2cm with plastic blocks. I retrieved an old 5V laptop fan: Then cut and strip away a spare USB cable: Solder the red and black wires on the fan and the cable: Secure the fan to the bottom of the casing with double-sided tape, then plug the fan into the box's USB connector. Here's a view of the box with some 3D-printed risers installed at the bottom to give the mounted fan sufficient clearance: The CPU now runs at 43c, a huge drop from the ...

Installing and customizing CoreELEC in X96 Air

I previously installed CoreELEC on another TV Box ( Ugoos X3 Pro ), which unfortunately died after only 9 months during the summer (due to the unit overheating, which I learned is a common problem for cheap Android TV boxes). So this time I purchased a X96 Air  (4GB/32Gb) and had to do the whole thing again. So this is a note-to-self in case I ever have to install CoreELEC again on some other device. Installation of CoreELEC is simple enough by following this guide . Basically, it involves downloading and writing the firmware to a microSD card using usbimager . Then insert the microSD card, reset the unit and hold the reset until the logo appears. The unit will then proceed to boot into CoreELEC. First thing is to connect to WiFi, then enable SSH. This allows me to login via ssh and execute: ceemmc -x from the terminal. This writes CoreELEC to the built-in eMMC storage, after which I am able to remove the microSD card and reboot the unit into CoreELEC via the built-in sto...