Skip to main content

Current draw of a D1 Mini in deep sleep

To measure the deep sleep current draw of the D1 Mini, I hooked up 4 NiMH AA batteries in series (~5.2V) to its 5V and GND pins.

The sketch uploaded to the D1 Mini was a nominal:

void setup() {
  ESP.deepSleep(60)*60*1000000UL, WAKE_RF_DEFAULT);
}

void loop() {
}

The current draw was a pretty steady 0.8mA, or 800uA. That's a obviously a far cry from the sub-100uA reportedly achievable with the barebones ESP-01 due to all the extra components on the D1 Mini.

Reported deep sleep current draw for the D1 Mini is all over the place, from 0.21mA (5V), to 0.3mA (3.3V), to 6mA (USB)!

Notes:

1. Connecting a 18650 battery (~4V) to the 5V pin did not work. In theory, the MC6211 LDO used by the D1 Mini means anything higher than 3.56V should work. But when connected, the onboard LED started to flash in a slow but erratic fashion, I suspect it is randomly resetting (because each time the D1 Mini powers up, the onboard LED flashes briefly).

2. Connecting a 18650 battery to the 3.3V pin did work, though in theory it shouldn't be done because the 3.3V is not connected to any voltage regulator. So the 4V goes directly to the ESP8266, which has a theoretical upper limit of 3.6V. But it did work for me (others have reportedly connected up to 5V to the ESP8266 with no problems, but don't push your luck!), and the deep sleep current draw was ~1.5mA. I suspect if I could hook up a regulated 3.3V source to the pin, the deep sleep current draw should fall closer to the 0.8mA range.

3. Connecting 2 x alkaline AA (3.2V) to the 3.3V pin did not work. The onboard LED started to flash erratically again. In theory, this should work, since the ESP8266 has a minimum operating voltage of 2.5V, but there have been many reports of the chip being finicky with the input voltage, so who knows.

Comments

Popular posts from this blog

Update: Line adapter for Ozito Blade Trimmer

Update (Dec 2021): If you access to a 3D printer, I would now recommend this solution , which makes it super easy to replace the trimmer line. I have been using it for a few months now with zero issue.

Cooling mod for the X96 Air

I realized after my Ugoos box died that overheating is a big problem with cheap Android TV boxes. A teardown of the Ugoos box shows that it does not have any heatsink or fan at all!  The X96 Air does have a heatsink, but the heatsink is located at the bottom of the casing with no ventilation. In this default configuration, with the ambient room temperature at 25c and playing a 1080p video, I was seeing the CPU temperature at 67c. I drilled a couple of holes at the bottom of the casing. The CPU temperature fell to 59c with the box raised about 2cm with plastic blocks. I retrieved an old 5V laptop fan: Then cut and strip away a spare USB cable: Solder the red and black wires on the fan and the cable: Secure the fan to the bottom of the casing with double-sided tape, then plug the fan into the box's USB connector. Here's a view of the box with some 3D-printed risers installed at the bottom to give the mounted fan sufficient clearance: The CPU now runs at 43c, a huge drop from the ...

Cooling mod for the X96 Air #2

Previously, I added a USB cooling fan to the X96 Air TV box . The problem with this mod is that the fan is always running, and it runs at full speed. Ideally, the fan should kick in only when the CPU temperature is above a certain threshold. It would be even better if there is a way to control the fan speed. Dan McDonald left me a comment pointing to his project on Github . He basically connected the fan to a USB relay that can be controlled by Python script. His project inspired me to make a similar mod that would make use of the spare D1 Mini boards I have lying around. The plan is to hook up the fan to a MOSFET (2N7000) and control it via PWM. Here's the very simple circuit: The code simply reads a single character from the serial port (0 - 9). 0 will turn the fan off, while 1 - 9 will generate a proportional PWM to drive the fan, with 1 being the lowest and 9 being the highest. Here's the Arduino code: #include <Arduino.h> void setup () { Serial . begin ( 9600 ...