Skip to main content

Measuring current draw with LTC4150 + ESP-12E

My LTC4150 Coulomb counter has finally arrived!

For testing, I hooked up the unit to the spare ESP-12E I have lying around:


All the jumpers on the LTC4150 are soldered (SJ1 = interrupt-driven counting; SJ2, SJ3 = 3.3V circuit).

The code for driving the Coulomb counter is as follows:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
#include <Time.h>
#include <TimeLib.h>

const int BATTERY_CAPS = 2300;
const byte INT_PIN = D1;
const float INT_TO_COULUMB = 0.614439;

bool trigger = false, init_done = false;
unsigned long total_time = 0, total_interrupts = 0;
volatile unsigned long num_interrupts = 0;
volatile unsigned long time1 = 0, time2 = 0;

void debug(const char *format, ...) {
  char buf[256];
  va_list ap;
  va_start(ap, format);
  vsnprintf(buf, sizeof(buf), format, ap);
  va_end(ap);
  Serial.println(buf);
}

void handleInterrupt() {
  if (time1 == 0) {
    time1 = millis();
    init_done = true;
  } else {
    num_interrupts++;
    time2 = millis();
    trigger = true;
  }
}

void setup() {
  Serial.begin(115200);
  pinMode(INT_PIN, INPUT_PULLUP);
  attachInterrupt(digitalPinToInterrupt(INT_PIN), handleInterrupt, FALLING);
} 
 
void loop() {
  if (init_done) {
    Serial.println();
    init_done = false;
  }

  if (trigger) {
  cli();
    trigger = false;
    unsigned long interval = time2 - time1;
    unsigned long ni = num_interrupts;
    time1 = time2;
  num_interrupts = 0;
  sei();
  total_time += interval;
  total_interrupts += ni;
    float ma = (ni * INT_TO_COULUMB) / (interval / 1000.0) * 1000.0;
    float ma_avg = (total_interrupts * INT_TO_COULUMB) / (total_time / 1000.0) * 1000.0;
    float lifetime = BATTERY_CAPS / ma_avg / 24.0;
    debug("\ninterval = %ldms; num_interrupts = %ld; ma = %fmA; ma_avg = %fmA; lifetime = %f days",
      interval, num_interrupts, ma, ma_avg, lifetime);
    time1 = time2; 
  }
  else {
    Serial.print(time1 == 0 ? '#' : '.');
  }
  delay(10*1000);
}

When the load is a 1K resistor, expected current draw is ~4V/1K = ~4mA. The following output was observed:

interval = 150862ms; num_interrupts = 1; ma = 4.072855mA; ma_avg = 4.072855mA; lifetime = 26.598871 days
interval = 150775ms; num_interrupts = 2; ma = 4.075205mA; ma_avg = 4.074029mA; lifetime = 26.591200 days
interval = 150829ms; num_interrupts = 3; ma = 4.073746mA; ma_avg = 4.073935mA; lifetime = 26.591818 days
interval = 150710ms; num_interrupts = 4; ma = 4.076962mA; ma_avg = 4.074691mA; lifetime = 26.586882 days
interval = 150850ms; num_interrupts = 5; ma = 4.073179mA; ma_avg = 4.074389mA; lifetime = 26.588854 days

When the load is a 47K resistor, expected current draw is ~4V/47K = ~0.08mA:

interval = 8380827ms; num_interrupts = 1; ma = 0.073315mA; ma_avg = 0.073315mA; lifetime = 1477.645142 days
interval = 8124328ms; num_interrupts = 2; ma = 0.075630mA; ma_avg = 0.074454mA; lifetime = 1455.033325 days
interval = 7995918ms; num_interrupts = 3; ma = 0.076844mA; ma_avg = 0.075234mA; lifetime = 1439.949219 days

I aborted the test after 3 readings because the current draw is so low it was taking too long to get 5 readings. But I think the readings are consistent enough to conclude that the power meter circuit gives reasonably accurate readings.

Comments

Popular posts from this blog

Update: Line adapter for Ozito Blade Trimmer

Update (Dec 2021): If you access to a 3D printer, I would now recommend this solution , which makes it super easy to replace the trimmer line. I have been using it for a few months now with zero issue.

Cooling mod for the X96 Air

I realized after my Ugoos box died that overheating is a big problem with cheap Android TV boxes. A teardown of the Ugoos box shows that it does not have any heatsink or fan at all!  The X96 Air does have a heatsink, but the heatsink is located at the bottom of the casing with no ventilation. In this default configuration, with the ambient room temperature at 25c and playing a 1080p video, I was seeing the CPU temperature at 67c. I drilled a couple of holes at the bottom of the casing. The CPU temperature fell to 59c with the box raised about 2cm with plastic blocks. I retrieved an old 5V laptop fan: Then cut and strip away a spare USB cable: Solder the red and black wires on the fan and the cable: Secure the fan to the bottom of the casing with double-sided tape, then plug the fan into the box's USB connector. Here's a view of the box with some 3D-printed risers installed at the bottom to give the mounted fan sufficient clearance: The CPU now runs at 43c, a huge drop from the ...

Installing and customizing CoreELEC in X96 Air

I previously installed CoreELEC on another TV Box ( Ugoos X3 Pro ), which unfortunately died after only 9 months during the summer (due to the unit overheating, which I learned is a common problem for cheap Android TV boxes). So this time I purchased a X96 Air  (4GB/32Gb) and had to do the whole thing again. So this is a note-to-self in case I ever have to install CoreELEC again on some other device. Installation of CoreELEC is simple enough by following this guide . Basically, it involves downloading and writing the firmware to a microSD card using usbimager . Then insert the microSD card, reset the unit and hold the reset until the logo appears. The unit will then proceed to boot into CoreELEC. First thing is to connect to WiFi, then enable SSH. This allows me to login via ssh and execute: ceemmc -x from the terminal. This writes CoreELEC to the built-in eMMC storage, after which I am able to remove the microSD card and reboot the unit into CoreELEC via the built-in sto...