Skip to main content

Test programming the ATtiny85

Just got my ATtiny85 chip today from the postman and playing with it now.

There are quite a number of ways to program the ATtiny85, from the very cheap (USBasp, Tiny AVR Programmer, USBtinyISP) to the more expensive (AVRISP mkII). The Tiny AVR Programmer is probably the most convenient of the lot because it targets the ATtiny family specifically, so no cables are required. Just plug the chip into the provided socket.

Since I already have a spare Arduino Uno lying around, I am going the no-cost way, using the Uno to program the ATtiny85. You basically need to hook up the Uno to the ATtiny85 on a breadboard via 6 jumper wires. It's actually easier than it sounds, and took all of a couple of minutes to do.

Configuring the Uno to become an ISP

The next step is crucial. You need to upload a sketch to the Uno so that it has the necessary code to become an ISP. That's how you can then program the ATtiny85 through the Uno.

The first step is to load the ArduinoISP sketch from the built-in examples:


Make sure you have the board type selected as "Arduino Uno"


Now click "Sketch, Upload" and the upload should be completed without errors.

Installing ATtiny85 support


Under "File, Preferences", in the "Additional Boards Manager URLs" field, add this URL: https://raw.githubusercontent.com/damellis/attiny/ide-1.6.x-boards-manager/package_damellis_attiny_index.json


Then under "Tools, Board. Boards Manager...", type in "attiny" in the Filter field. You should see "attiny by David A. Mellis". Select and install.


Now that we have ATtiny85 support, under "Tools, Board", scroll to the end of the menu and select "Attiny 25/45/85".


Under "Tools, Processor", select "ATtiny85".

 
Under "Tools, Programmer", select "Arduino as ISP".


We are now ready to program the ATtiny85! Open up the sample "Blink" sketch:


 Change all references of LED_BUILTIN to 1. So the code looks like this:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
// the setup function runs once when you press reset or power the board
void setup() {
  // initialize digital pin LED_BUILTIN as an output.
  pinMode(1, OUTPUT);
}

// the loop function runs over and over again forever
void loop() {
  digitalWrite(1, HIGH); // turn the LED on (HIGH is the voltage level)
  delay(1000); // wait for a second
  digitalWrite(1, LOW); // turn the LED off by making the voltage LOW
  delay(1000); // wait for a second
}

Select "Sketch, Uploading Using Programmer" to upload the compiled sketch to the ATtiny85. Using "Upload Using Programmer" is important, as it indicates to upload the sketch through the Uno which we have setup as an ISP.


Once the sketch is successfully upload, we can connect a LED to the ATtiny85 (longer lead (+) to Pin 1, shorter lead (-) to GND) and watch it blink.



► Breadboard diagram created using Tinkercad.
► Source code formatted using hilite.me ("manni" style).

Comments

  1. Arduino: 1.8.9 (Windows 10), Board: "ATtiny25/45/85, ATtiny85, Internal 1 MHz"

    Sketch uses 956 bytes (11%) of program storage space. Maximum is 8192 bytes.
    Global variables use 17 bytes (3%) of dynamic memory, leaving 495 bytes for local variables. Maximum is 512 bytes.
    avrdude: Yikes! Invalid device signature.
    Double check connections and try again, or use -F to override
    this check.

    An error occurred while uploading the sketch

    This report would have more information with
    "Show verbose output during compilation"
    option enabled in File -> Preferences.

    ReplyDelete

Post a Comment

Popular posts from this blog

Update: Line adapter for Ozito Blade Trimmer

Update (Dec 2021): If you access to a 3D printer, I would now recommend this solution , which makes it super easy to replace the trimmer line. I have been using it for a few months now with zero issue.

Cooling mod for the X96 Air

I realized after my Ugoos box died that overheating is a big problem with cheap Android TV boxes. A teardown of the Ugoos box shows that it does not have any heatsink or fan at all!  The X96 Air does have a heatsink, but the heatsink is located at the bottom of the casing with no ventilation. In this default configuration, with the ambient room temperature at 25c and playing a 1080p video, I was seeing the CPU temperature at 67c. I drilled a couple of holes at the bottom of the casing. The CPU temperature fell to 59c with the box raised about 2cm with plastic blocks. I retrieved an old 5V laptop fan: Then cut and strip away a spare USB cable: Solder the red and black wires on the fan and the cable: Secure the fan to the bottom of the casing with double-sided tape, then plug the fan into the box's USB connector. Here's a view of the box with some 3D-printed risers installed at the bottom to give the mounted fan sufficient clearance: The CPU now runs at 43c, a huge drop from the ...

Installing and customizing CoreELEC in X96 Air

I previously installed CoreELEC on another TV Box ( Ugoos X3 Pro ), which unfortunately died after only 9 months during the summer (due to the unit overheating, which I learned is a common problem for cheap Android TV boxes). So this time I purchased a X96 Air  (4GB/32Gb) and had to do the whole thing again. So this is a note-to-self in case I ever have to install CoreELEC again on some other device. Installation of CoreELEC is simple enough by following this guide . Basically, it involves downloading and writing the firmware to a microSD card using usbimager . Then insert the microSD card, reset the unit and hold the reset until the logo appears. The unit will then proceed to boot into CoreELEC. First thing is to connect to WiFi, then enable SSH. This allows me to login via ssh and execute: ceemmc -x from the terminal. This writes CoreELEC to the built-in eMMC storage, after which I am able to remove the microSD card and reboot the unit into CoreELEC via the built-in sto...