Skip to main content

Hacking a USB-C to slim tip adapter cable to charge the Thinkpad T450s

This hack is inspired by this post.

A year ago, I bought an adapter cable for my wife's Thinkpad X1 Carbon (2nd Gen) that allows her to power her laptop with a 60W-capable portable battery (20V x 3A). A USB-C cable goes from the battery into the adapter, which converts it to the slim tip output required by the laptop. Everything works out of the box, so I didn't give much thought about it.
Recently, I decided to buy a similar cable for my Thinkpad T450s. I know technically it should work because the T450s can go as low as 45W (20V x 2.25A) in terms of charging (though I have the 65W charger - 20V x 3.25A).  I went with another adapter cable because it was cheaper and also I prefer the single cable design.

So imagine my surprise when the cable came and I plugged it into my laptop and it didn't work! The power manager just cycle in and out of charging mode before giving up with an error message saying there is not enough power.

After much research and reading the Thinkwiki Power Connector page, I finally realized what was going on. The middle pin in the slim tip connector is hooked to ground via a tiny resistor. The value of the resistor tells the charging circuit what current to draw. If it's 120Ω, it will draw 2.25A (45W). If it's 280Ω, it will draw 3.25A (65W). If it's 550Ω, it will draw 4.5A (90W). So obviously the connector in the cable I received is the 550Ω/90W type. So it makes my T450s try to draw 4.5A for charging, which far exceeds the 3A that the battery is able to provide. So the battery drops voltage, which terminates the charging cycle.

(It also means my wife's cable has the 65W connector, which is out-of-spec, since the listing says it supports up to 90W. But turns out to be a blessing in disguise, so my wife was able to charge her laptop with a 60W battery out of the box).

So now I have 3 options:

1. Buy a new portable battery that can supply 90W (87W, or 20V x 4.35A will probably work).

2. Get a 45W charger, cut off the slim tip connector and splice it to the existing adapter cable.

3. Cut open the slim tip connector on the adapter cable and change the embedded resistor to reflect a lower wattage.

1) is obviously the easiest and most expensive option, 3) is the most laborious but least expensive option. After reading Marc's blog post, it gave me the confidence to try out 3).

I decided to mod the slim tip connector to 65W (280Ω) instead of 45W, because I can verify with my wife's setup that the 60W battery works for charging my laptop. Also, I have some spare 270Ω resistors lying around, which has a good chance of substituting for the 280Ω required.

First thing to do is to slice open the seams of the slim tip connector with a sharp pen knife:



The resistor is encased in some kind of resin:


After trying to use the pen knife to scrape away the resin, I decided it would be faster to use the soldering iron to melt away the resin instead. I focused on the area near the black wire to reveal the resistor:


It helps to have a piece of wet cloth nearby to clean away the melted resin on the tip of the soldering iron. Also a pair of sharp nose cutter is also invaluable in helping to clean up the residual resin as much as possible.

Here's the connector with the resistor removed:


You basically want to clear away enough resin so that there is adequate surface to solder on the new resistor.

Here's the removed resistor:


Here's the connector with the new resistor (270Ω) soldered.


At this point, I tested the connector with the 60W battery, and it worked flawlessly! I left it running for 10 minutes, charging the laptop while I maxed out the CPU and screen brightness, and it didn't miss a beat.

Now to wrap things up...

With the connector sitting in one half of the rubber enclosure, I added copious amount of hot glue into the crevices to give it strength. Then I folded in the other half of the enclosure, and secured the two halves together with some electrical tape.


I think hot-shrink tubing would have been a better choice, but since I didn't have the equipment for that, electrical tape would have to do.

That's it! Now I can charge my T450s with a portable battery.

Comments

Popular posts from this blog

Cooling mod for the X96 Air #2

Previously, I added a USB cooling fan to the X96 Air TV box . The problem with this mod is that the fan is always running, and it runs at full speed. Ideally, the fan should kick in only when the CPU temperature is above a certain threshold. It would be even better if there is a way to control the fan speed. Dan McDonald left me a comment pointing to his project on Github . He basically connected the fan to a USB relay that can be controlled by Python script. His project inspired me to make a similar mod that would make use of the spare D1 Mini boards I have lying around. The plan is to hook up the fan to a MOSFET (2N7000) and control it via PWM. Here's the very simple circuit: The code simply reads a single character from the serial port (0 - 9). 0 will turn the fan off, while 1 - 9 will generate a proportional PWM to drive the fan, with 1 being the lowest and 9 being the highest. Here's the Arduino code: #include <Arduino.h> void setup () { Serial . begin ( 9600 ...

Installing and customizing CoreELEC in X96 Air

I previously installed CoreELEC on another TV Box ( Ugoos X3 Pro ), which unfortunately died after only 9 months during the summer (due to the unit overheating, which I learned is a common problem for cheap Android TV boxes). So this time I purchased a X96 Air  (4GB/32Gb) and had to do the whole thing again. So this is a note-to-self in case I ever have to install CoreELEC again on some other device. Installation of CoreELEC is simple enough by following this guide . Basically, it involves downloading and writing the firmware to a microSD card using usbimager . Then insert the microSD card, reset the unit and hold the reset until the logo appears. The unit will then proceed to boot into CoreELEC. First thing is to connect to WiFi, then enable SSH. This allows me to login via ssh and execute: ceemmc -x from the terminal. This writes CoreELEC to the built-in eMMC storage, after which I am able to remove the microSD card and reboot the unit into CoreELEC via the built-in sto...

DC-DC Buck Stepdown Converter for ESP8266

I am working on a project that requires a step-down converter from 12V to 5V, that will then power a WeMOS D1 Mini. I saw this new mini buck converter based on the usual LM2596 MP2307 , so I thought I'd give it a try. Unfortunately, it didn't work. Although it is supposed to be able to supply up to 1.8A, the D1 Mini was not able to boot up. The 5V pin was being properly supplied, but the 3.3V pin measures at only ~1.3V. So I had to go back to my usual LM2596 module, which is much larger, but works to power the D1 Mini with a 12V source. Here's a great review of the mini buck converter I found while trying to figure out how to make it work. The fact that it has high quiescent current (~60mA) is also mentioned in a few other sources.